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ABSTRACT 

Numerical predictions of laminar and turbulent fluid flow and heat transfer around staggered and in-line 
tube banks are shown to agree closely with seven experimental test cases. The steady state Reynolds-averaged 
Navier-Stokes equations are discretised by means of a cell-centred finite-volume algorithm. Two-dimensional 
results include velocity vectors and streamlines, surface shear stresses, pressure coefficient distributions, 
temperature contours, local Nusselt number distributions and average convective heat transfer coefficients, 
and indicate very good agreement with experimental data. It is found that a relatively fine grid is required 
to be able to predict the surface heat transfer behaviour accurately. Also, three-dimensional simulations 
are shown, which are physically consistent. The numerical procedure presented here is robust, accurate 
and time efficient, making it suitable as a design tool for tube banks in heat exchangers. 

KEY WORDS Tube banks Finite volume method Convective heat transfer Tube bundles Crossflow Heat 
exchangers 

INTRODUCTION 

Heat exchangers containing tube banks in crossflow are widely used in industrial and power 
engineering applications. The local fluid flow and heat transfer around a tube in a tube bank 
is complex, and it depends primarily on the inlet flow conditions, turbulence intensity, surface 
roughness and the geometry of the tube bank1. Traditionally, tube bank design has been mostly 
carried out by experimental and/or empirical methods. Experiments usually involve high costs 
(economic and temporal) and sometimes technical difficulties in obtaining direct full-scale 
measurements, and empirical methods do not permit the analysis of the local fluid flow and 
heat transfer characteristics within the tube bank. This motivates the use of computational fluid 
dynamics (CFD) codes2 as an alternative design tool for tube bank heat exchangers. 

Numerical solutions provide the values of the dependent variables throughout the 
computational domain, allowing a more detailed comprehension of the phenomena involved. 
Several fluid flow and heat transfer simulations in tube banks have been reported, which are 
either finite difference3,4 or finite element5 based, and focus on either laminar3,4,5 or turbulent6 

flows. Finite difference and finite element algorithms present some disadvantages. 
The former approach often requires a restriction on the complexity of the geometric domain 

to achieve sufficient accuracy and the judicious use of artificial dissipation to ensure robustness. 
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The latter often leads to computationally expensive algorithms, making the codes less suitable 
for design purposes. In contrast, the finite volume formulation exploits the economy of finite 
difference discretisation and the geometric flexibility of finite element methodology. Faghri and 
Rao7 used a finite volume formulation to predict two-dimensional flow and heat transfer in 
finned and unfinned tube banks for the laminar regime. 

The contribution of the present study is two-fold. First, a finite volume formulation is developed 
which is capable of simulating both laminar and turbulent flow and heat transfer around staggered 
and in-line tube banks, with sufficient robustness and efficiency so that the code can be used as 
a design tool for tube bank heat exchangers. Second, a comprehensive validation of the results 
is undertaken, including local heat transfer, against available experimental data over a wide 
range of Reynolds numbers. 

It may be suggested that the various test cases simulated in this paper could be considered 
as a 'standard' set of test cases that all industrial CFD codes should be assessed against. This 
would provide a partial assurance of quality. 

Also, three-dimensional computations around tube bank configurations between two parallel 
plates (longitudinal fins) are presented, which are verified for physical consistency. Although no 
detailed experimental data are available for these test cases, this is the real situation for which 
the design use of CFD codes must be effective. 

THEORETICAL FORMULATION 

Here, the appropriate governing equations and boundary conditions are indicated and discussed. 
Since the present formulation is to be used in a design mode, a two-layer wall function is 
introduced to represent accurately the near-wall behaviour without compromising the overall 
economy of execution. 

Governing equations 
The flow and heat transfer around tube bank configurations can be accurately described by 

the steady-state Reynolds-averaged Navier-Stokes equations. The assumption of steady-state 
flow is consistent for tube banks in crossflow, since the constraining effect of the neighbouring 
tubes suppresses the appearance of vortex shedding, even for high Reynolds numbers. These 
equations, retaining only dominant terms, can be written as: 

Here, the standard nomenclature found in the literature is used2. The term kcff is the effective 
thermal diffusivity, which includes the eddy diffusivity, and accounts for the conductive heat 
transfer exchange in laminar or turbulent regimes. Equations (2) contain Reynolds stresses that 
are modelled by the standard k-ε turbulence model. The following transport equations govern 
the behaviour of k and Ε: 
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Details of the k-ε turbulence model and the appropriate values for the parameters and constants 
can be found elsewhere8. 

Boundary conditions 
The solution domain is defined to take advantage of the symmetry conditions of the flow, 

which are valid assuming that the number of tube rows (m) and columns (n) is large (m, n > 10). 
This is certainly the case for practical applications. The boundaries of the computational domain 
for an in-line tube bank configuration are presented in Figure 1. Four types of boundary 
conditions are implemented: 

Inlet plane: Dirichlet boundary conditions are imposed at the inlet boundary. 
Outlet plane: Streamwise gradients (Neumann boundary conditions) for the variables are set 

to zero at the outlet plane. 
Symmetry planes: On the upper and lower symmetry planes normal gradients are set to zero. 
Solid surfaces: No-slip conditions and either constant wall temperature or constant heat flux 

are specified at the walls. 
Some discussion is necessary about the boundary conditions implemented at the outflow 

plane. The assumption of zero streamwise gradient of the velocities and turbulent variables 
can be justified by the physical conditions of the flow at the outlet boundary. The region around 
90° from the front stagnation point of an individual tube is located at the minimum cross section 
of the tube bank, where maximum velocities are present, and where the flow tends to be aligned 
with the streamwise direction. From the numerical point of view, when the above outflow 
boundary conditions are implemented and nothing is specified about the pressure, the continuity 
equation may not be satisfied over the computational domain9. In this case, any discrepancies 
in mass conservation are corrected by adding a constant to the streamwise velocity at the outlet 
plane. The velocity increment is calculated by dividing the difference in mass flow between the 
inlet and the outlet planes by the number of outflow control volumes. 

Another alternative is the use of periodic boundary conditions. They are physically consistent 
only downstream of the seventh row in the tube bank, where periodicity of the flow is achieved. 
This option limits the simulation only to fully developed flow conditions, which is not the case 
for the first tubes in the bank, where important changes in flow and heat transfer take place. 
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A two-layer wall function10, which assumes that two distinguishable fluid layers (viscous 
sublayer and fully turbulent wall dominated layer) are present, is used to relate the solid surface 
boundary conditions to the first grid point away from the wall, which must be located outside 
the viscous sublayer (y + > 11). For laminar flow, the wall heat flux and the temperature are 
related by: 

where is evaluated from the temperature solution. 

For turbulent flow, the heat flux and the temperature at the wall are related by the following 
expression11 (which exploits the dominant logarithmic form of the wall function): 

where the empirical function P is given by11: 

COMPUTATIONAL METHOD 

A cell-centred finite volume formulation based on the use of area vectors2 is used to achieve 
discrete mass conservation and to maintain reasonable accuracy as the grid is distorted. 
Dispersion-adjusted interpolation is introduced to model accurately the convective terms. An 
auxiliary potential method with SIMPLEC2 algorithm is used to couple the velocity, pressure 
and density solutions. 

Computational algorithm 
The governing equations (1), (3) can be written symbolically as: 

Equation (9) lends itself to a general finite-volume discretisation, which can be implemented 
directly in physical space using the concept of area vectors2. In this case (9) becomes, for a 
six-sided control-volume: 

where An represents the area vector of the nth face, <S1> denotes the source term evaluated at 
the centre of the control volume, and the determinant of the inverse Jacobian |J-1| i s effective 
volume of the control volume, which can be obtained from: 

where A = | J - 1 | J and xcf is the vector of the centroids of the faces of the control volume. 
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Considering the transport nature of the governing equations, F' can be written as 

where ψ is a general scalar, e.g. u in the x-momentum equation or T in the energy equation. 
Therefore, one component of the left hand side of (10) can be expressed as: 

where u-A(i,) represents the normal flux through the nth surface, and ft is the total diffusion 
coefficient, either the total viscosity for the momentum equations or the effective thermal 
diffusivity in the energy equation. The second term can be evaluated in terms of either physical 
coordinates or generalised coordinates. The latter approach is chosen, leading to: 

Defining the generalised convection and diffusion coefficients as: 

Equation (13) becomes: 

The generalised convection and diffusion coefficients are evaluated at the centre of each face, 
whereas the dependent variables are evaluated at the centre of each control volume. This makes 
the evaluation of ∂ψ/∂ξj for derivatives normal to the face very compact. Assuming ∆ξ = ∆η = 1, 

The first derivatives in the governing equations are evaluated using the four point asymmetric 
discretisation2. For a uniform grid, with Fc = Ciψ the value of Fc on a control surface is: 

Here φi-1/2 is a Roe-type limiter which can be activated if very strong gradients are expected. 
In the present study φ i - 1 / 2= 1.0. Also, the parameter q allows additional control over the 
dispersion suppression2 properties. Here, we use q = 0.5, which leads to a third order accurate 
determination of 

The discretised equations are solved sequentially at each iteration to obtain the dependent 
variables, using a Strongly Implicit Procedure (SIP)2. The solution for the velocity is denoted 
by where To satisfy continuity it is necessary that: 

therefore a correction factor for the velocity is introduced: 

The correction velocity field is obtained from the velocity potential: 
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The pressure and density corrections can also be obtained from φ, using the auxiliary potential 
method12: 

Here a, β and δ are under-relaxation factors and a* is the sound speed. This leads to the following 
transport equation for φ: 

The term is introduced in computational space to assist in the damping of any pressure 

oscillations that may occur due to the fact that the discretisation algorithm is non-staggered, 
i.e., the velocity components and pressure are specified at the same grid points. Further description 
of the present formulation is available elsewhere13. 

Grid generation 
The computational mesh is body-fitted, and is generated using algebraic methods14. Geometric 

stretching functions of the type ∆yj = (l + ε)∆yj_1 are used to cluster grid points near the solid 
regions. The grid is smoothed via an elliptic solver for the Laplace equation using successive 
over-relaxation (SOR). The grid generation code allows the geometrical parameters to be set as 
input data. A two dimensional mesh for an in-line configuration is presented in Figure 2 and a 
three dimensional grid for a staggered configuration between two parallel plates is shown in 
Figure 3. 

RESULTS AND DISCUSSION 

Results for realistic tube bank geometries have been obtained. Two-dimensional simulations are 
accurate when the influence of the surrounding walls is negligible and the flow direction is 
normal to the tubes longitudinal axis. This is usually the case when the tubes length to diameter 
ratio is greater than ten, and the number of rows (m) and columns (n) is large (m, n > 10)15. This 
situation is found frequently in industrial applications and laboratory experiments. 
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Three-dimensional simulations are necessary when side walls effects are important, as in tube 
banks with fins and/or spacers, which are mostly found in industrial heat exchangers. 

Solution procedure 
The strategy of computation consists of progressively simulating the flow in deeper sections 

in the tube bank, using the conditions at the outlet of the previous section as inlet boundary 
conditions for the next computational domain. This procedure is efficient, and due to the flow 
conditions, is also accurate, as it will be shown in Figure 5. A computational domain consisting 
of a straight section and the front half of the first cylinder is used to initiate the simulation into 
the tube bundle for the two-dimensional cases, and a similar geometry between two parallel 
surfaces is used as starting domain for the three-dimensional simulations. 

Computational background 
All the computations mentioned below were performed on Hewlett Packard 730 Series 

workstations, which have an optimal performance of about 20 M Flops. Grid sizes vary from 
case to case, since very fine grids are needed to accurately predict the local surface heat transfer. 
Also, the number of iterations required to achieve convergence is dependent on the type of flow 
and the Reynolds number considered. The two-dimensional isothermal laminar case (Figure 4) 
on a 65 x 45 grid takes 400 iterations to converge which requires 3 min of CPU time. The 
two-dimensional laminar case with heat transfer (Figure 12) on a 154 x 22 grid needs 1000 
iterations to converge requiring 14.1 min of CPU time. The two-dimensional isothermal turbulent 
case (Figure 7) on a 134 x 34 grid takes 1200 iterations to converge which requires 18 min of 
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CPU time. For the two dimensional turbulent case with heat transfer (Figure 14) on a 114 x 72 
grid, convergence is obtained after 1500 iterations which takes 67 min of CPU time. For the 
three dimensional turbulent case with heat transfer prediction (Figure 17), convergence is obtained 
after 2000 iterations, taking 10 hrs of CPU time on a 115 x 25 x 25 grid. These data show that 
simulations on fairly realistic geometries can be performed in reasonable CPU times. 

No sufficient data has been found in the literature by the authors regarding computational 
costs for realistic simulations in tube bank flows with heat transfer which could permit a detailed 
assessment of the relative efficiency of the present code. However, Faghri and Rao7 reported 
CPU times between 120 and 200 min for the flow equations, and an additional 3 to 6 min for 
the energy equation, when predicting a two-dimensional laminar flow using a finite-volume 
algorithm with a 56 x 31 grid on a NAS7000 mainframe computer using an IBM OS/MVS 
operating system. Also, Chang et al.16 reported a CPU time of 20 min on a VAX 11/785 computer, 
when simulating a two-dimensional laminar flow with heat transfer for an in-line tube bundle 
using a Galerkin finite-element technique on a 324 nodes and 240 elements grid. 

Two-dimensional laminar flow behaviour 
Initially, laminar two-dimensional isothermal flow predictions are presented. Figure 4 shows 

the typical velocity vectors and streamlines for an in-line configuration, Re = 60, with longitudinal 
pitch ratio of two (a = 2), and transverse pitch ratio of two (b = 2), between rows 6 and 7. The 
flow patterns are consistent with experimental visualisation data reported by Nishimura et al.5. 
The closed recirculation region between tubes is well captured by the simulation. It was also 
observed that periodicity of the flow is achieved after 7 rows inside the tube bank, which agrees 
with what has been reported in experimental studies. 
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Figure 5 shows the dimensionless surface shear stress distribution over the seventh row for 
an in-line configuration, for Re = 54. The dashed line corresponds to the simulation on the same 
geometry presented in Figure 2, and the continuous line corresponds to a computation performed 
on an 'extended' geometry, in which the grid is duplicated to include the whole tube. These 
results indicate that the outflow boundary conditions used are realistic and that their influence 
is confined to the outflow region. This comparison also suggests the use of the extended geometry 
for in-line configurations only around the row of interest, and to advance the solution inside 
the tube bank using the original procedure. It is important to mention that the experimental 
results have a 10% to 15% uncertainty, specially in the regions of low velocity flow5. Nevertheless, 
the results show good agreement. The zero shear stress value at 40° corresponds to the 
reattachment point of the impinging wake from the upstream cylinder (Figure 4), which is not 
shown by experimental values. The wall shear stresses distribution over the seventh row in a 
staggered configuration are presented in Figure 6, also showing very good agreement with 
experimental values. Since the wall shear stress is determined from the local velocity gradient, 
this is a particularly demanding test case. 

Two-dimensional turbulent flow behaviour 
Velocity vectors and streamlines for a two-dimensional staggered configuration with a = 2.0 

and b = 2.0 between rows 1 and 3 in turbulent regime at Re = 1.5 x 106 are presented in Figure 
7. Because of the presence of the turbulent boundary layer over the cylinder surface, the separation 
point is shifted downstream relative to that for laminar flow, decreasing the size of the wake. 
The recirculation region downstream of the first row is larger than in subsequent rows, since 
the turbulence intensity increases as the gas flows deeper into the tube bank, and also because 
the flow around the first row is more like that around an isolated tube than subsequent rows17. 
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The pressure coefficient distribution over the second row for a staggered configuration with 
a = 2.0 and b = 1.4 and Re = 1.5 x 106 is presented in Figure 8. The agreement with experimental 
results reported by Achenbach18 is very good. 

Three-dimensional flow behaviour 
The streamtraces around rows one to three of a three-dimensional staggered tube bank between 

two parallel solid boundaries with longitudinal, transverse and side wall pitch ratios of two for 
laminar regime (Re — 60) are presented in Figure 9. The flow patterns are physically consistent, 
with the boundary layer development on the lateral solid boundaries and the presence of corner 
vortices created by the local boundary layer separation. This generates a region of accelerated 
flow towards the symmetry plane. Similar results for turbulent flow over a three-dimensional 
staggered configuration with a = 1.6, b = 1.6 and side walls pitch ratio of two, for Re = 5.6 x 104, 
are presented in Figure 10. In this case, the turbulent boundary layer is able to resist the adverse 
pressure gradient better than the laminar boundary layer. As a result the corner vortex is weaker 
and there is a stronger tendency for the streamtraces to stay parallel to the side walls. Since no 
experimental results for this type of geometry have been found, the three-dimensional results at 
the symmetry plane are verified for consistency with results for similar two-dimensional 
configurations. These are presented in Figure 11. A good qualitative agreement is observed, for 
the side wall pitch ratio considered. 
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Heat transfer behaviour 
Laminar two-dimensional heat transfer predictions around an in-line configuration with a — 1.5 

and b = 1.5 are presented in Figure 12, for rows 1 and 2, which shows the local Nusselt number 
distributions for Re = 120 and Pr = 0.7. Constant temperature boundary conditions were imposed 
at the walls. These results agree well with other simulations4. The shape of the Nusselt number 
distribution for the first row differs from the shape over the second row, because there is no 
wake shading effect upstream of the first cylinder. As a result the thinner boundary layer leads 
to a higher temperature gradient and thus to a higher heat transfer at the wall. The minimum 
Nusselt number at θ ≈ 150° corresponds to the boundary layer separation point, where the flow 
velocity is very low leading to a low temperature gradient. Figure 13 shows the overall convective 
heat transfer coefficient for the same in-line configuration. In this case, the computation was 
repeated over ten rows, and the overall heat transfer coefficient was calculated by integrating 
the local heat transfer coefficient distributions in each row, and taking the average over the ten 
cylinders, for three different Reynolds numbers. The results show very good agreement with 
experimental data from Bergelin et al.19. This confirms that the solution procedure adopted in 
this work is also effective in computing the global heat transfer characteristics of a tube bank. 

The local Nusselt distribution for the second row of a staggered tube bank with a = 2.0 and 
ft = 1.4 for turbulent flow is presented in Figure 14, for Re = 1.5 x 106 and Pr = 0.7, and compared 
with experimental results reported by Achenbach20. The actual boundary conditions present in 
the experiments are difficult to reproduce, since the experimental surface heat transfer does not 
occur under either constant wall temperature or constant wall heat flux. However the tubes 
were built of copper20, which is a highly conductive material. In this case, it is expected that 
the surface heat transfer takes place in a condition close to constant wall temperature1. This 
was the wall boundary condition used for this particular simulation. Also, for the conditions of 
the experiment, transition effects certainly influence the local heat transfer characteristics, and 
cannot be accounted for by the present formulation. Nevertheless, the agreement with the 
experimental results is good. The minimum value of the Nusselt number distribution at the rear 
part of the cylinder corresponds to the separation point, which appears shifted downstream 
when compared with the experimental values, possibly due to unaccounted transition phenomena 
which affects the nature of the boundary layer and its point of separation. 
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The difference between the use of a standard wall function and a two-layer wall function is 
also examined. A more accurate result is obtained with the two-layer wall function, indicating 
that the local heat transfer is very sensitive to the type of wall treatment used. Similar conclusions 
have been reported elsewhere11. It was also found that a finer and more dense grid is needed 
to obtain good agreement with experimental results for the local heat transfer distribution, 
because a good grid resolution is necessary close to the walls and also because the amount of 
grid stretching in the direction normal to the walls needs to be maintained at very low values 
(1 + ε ≤ 1.01). The average Nusselt number for an in-line configuration with a = 2.0 and b = 2.0 
in turbulent flow for different Reynolds numbers is presented in Figure 15, which agrees very 
well with experimental results6. 

Isotherms in a three-dimensional staggered configuration for turbulent flow are presented in 
Figure 16. In this case, hot air from the inlet (left) flows around the cold tubes and side walls, 
which are kept at constant temperature. The temperature drops faster in the regions of low 
speed flow (cylinder wake). The isotherms also show a temperature drop towards the side walls. 
The overall temperature patterns for this simulation are physically consistent. 

CONCLUSIONS 

A finite volume solution procedure has been used to predict complex laminar and turbulent 
flow and heat transfer through realistic tube bank geometries. The results have been validated 
for different tube bank configurations and flow regimes, and show very good agreement with 
available experimental data for two-dimensional cases, and are physically consistent for three 
dimensional cases. The validation of the local surface heat transfer results for different flow 
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regimes has been carried to greater accuracy than in previous predictions, indicating that finer 
grids are required to be able to predict heat transfer accurately. The large number of flow 
conditions treated using the same numerical method provides a broad collection of test cases. 
The present algorithm has proven to be robust, computationally efficient and accurate, which 
makes it very attractive and reliable as a design tool for tube bank heat exchangers. 
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